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Abstract
Among others, Uhling and Uhlenbeck, Kaniadakis and Quarati and Kadanoff
have suggested to describe the evolution of quantum systems exhibiting Fermi–
Dirac and Bose–Einstein statistics by means of classical but nonlinear evolution
equations for density measures such as generalized Boltzmann equations and
nonlinear Fokker–Planck equations. We use this approach in order to derive
classical Langevin equations for quantum systems and apply the Langevin
equations thus obtained to two fundamental quantum systems, namely, the free
electron gas and blackbody radiation.

PACS numbers: 05.40.−a, 71.10.Ca

1. Introduction

In line with early studies by Uhling and Uhlenbeck [1, 2], several authors have suggested to
describe the evolution of quantum systems exhibiting Fermi–Dirac and Bose–Einstein statistics
by means of Fokker–Planck equations that are nonlinear with respect to density measures
[3–9]. The nonlinearities reflect the quantum mechanical constraints on Fermi and Bose
systems. So far, however, this approach to quantum systems is incomplete with respect to two
issues. First, the approach ignores the degeneracy of energy levels. Second, the approach has
not been applied to quantum mechanical benchmark systems such as the free electron gas and
blackbody radiation. In this paper, we address both issues within the framework of Langevin
equations related to nonlinear Fokker–Planck equations of quantum systems.

2. Generalized Fokker–Planck and Langevin equations

2.1. Free energy principle

Let us consider a system with N energy levels ε1, . . . , εN . Let ρi denote the mean occupation
number of the energy level i. Finally, let gi > 0 describe the number of different quantum
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states that belong to the same energy level εi , that is, the degeneration of the energy level i.
Then the quantum entropy for Fermi and Bose particles reads [10]

FD,BES(ρ1, . . . , ρN) = −
N∑

i=1

ρi ln ρi +
N∑

i=1

gi ln gi ∓
N∑

i=1

(gi ∓ ρi) ln(gi ∓ ρi). (1)

Note that here and in what follows the upper sign refers to Fermi systems, while the lower sign
refers to Bose systems. In the case of Fermi systems we require that the inequality ρi < gi

holds for temperatures T > 0. For T = 0 we have ρi = gi up to the Fermi energy εF and
ρi = 0 for energy states i with εi > εF . For studying systems with continuous energy levels
ε ∈ � = [0,∞), we replace gi by a function g(ε) � 0. The expression g(ε) dε describes the
number of states in an energy range between ε and ε + dε. That is, g(ε) describes the density
of states with respect to the energy scale ε [11]. Using g(ε), we modify equation (1) in order
to obtain

FD,BES[ρ] = −
∫

�

ρ(ε) ln ρ(ε) dε +
∫

�

g(ε) ln g(ε) dε

∓
∫

�

[g(ε) ∓ ρ(ε)] ln[g(ε) ∓ ρ(ε)] dε. (2)

Here, ρ(ε) describes the mean occupation number density on a continuous energy scale. In
the case of Fermi systems the constraint ρ(ε) < g(ε) for T > 0 holds. Now, let us consider
the free energy

F [ρ] = U [ρ] − T FD,BES[ρ] (3)

with

U [ρ] =
∫

�

ερ(ε) dε. (4)

In order to derive stationary distributions ρst from the free energy principle δF/δρ = µ, we
need to compute the variational derivatives of U and FD,BES. They read

δU

δρ
= ε (5)

and
δ

δρ

FD,BES = − ln

(
ρ

g ∓ ρ

)
. (6)

From δF/δρ = µ and equations (3), (5), (6), we obtain the Fermi–Dirac and Bose–Einstein
distributions for quantum systems with degenerated energy levels:

ρst(ε) = g(ε)

exp{(ε − µ)/T } ± 1
. (7)

2.2. Fokker–Planck equation

In line with recent studies on nonlinear Fokker–Planck equations, we assume that ρ(ε, t)

satisfies the free energy Fokker–Planck equation

∂

∂t
ρ(ε, t) = ∂

∂ε
ρ

∂

∂ε

δF

δρ
(8)

see [3–7, 9, 12–17] in general and [8] in particular. The benefits of Fokker–Planck equations
of the form (8) are at least twofold. First, equilibrium distributions obtained from δF/δρ = µ

correspond to stationary solutions of equation (8). Since for solutions of equation (8) we
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have dF/dt � 0 (see equation (9)), (stable) stationary solutions correspond to free energy
minima. This is tantamount to saying that in the stationary case we deal with maximum entropy
distributions of canonical ensembles. Second, transient solutions of equation (8) converge to
stationary ones in the long time limit provided that the entropy measures are concave [5, 8,
9, 13]. The reason for this is that for transient solutions of equation (8) the functional F
satisfies

d

dt
F [ρ] = −

∫
�

ρ

[
∂

∂ε

δF

δρ

]2

dε � 0. (9)

By definition of the functional F [ρ], we have dρ/dt = 0 ⇒ dF/dt = 0 and from equation (9)
it is clear that dF/dt = 0 ⇒ δF/δρ = const, which implies that dF/dt = 0 ⇒ dρ/dt = 0.
Furthermore, let us write S as S[ρ] = ∫

�
s(ρ, g) dε with g = g(ε). If ∂2s/∂ρ2 � 0 for all

ε, then s satisfies the concavity inequality s(ρ, g) � s(ρ ′, g) + (ρ − ρ ′)∂s/∂ρ ′ for all ε and
S is a concave functional. From the concavity of S, in turn, it follows that F [ρ] � F [ρst]
[18, 19]. In fact, evaluating equation (2) we find that ∂2s/∂ρ2 = −g/[ρ(g∓ρ)]. In particular,
for fermions we have ∂2s/∂ρ2 = −g/[ρ(g − ρ)]. Due to the constraint ρ(ε, ·) < g(ε), we
obtain ∂2s/∂ρ2 � 0. For bosons we get ∂2s/∂ρ2 = −g/[ρ(g + ρ)] � 0. Therefore, S is
concave and F is bounded from below for arbitrary density of state functions g satisfying
g(ε) � 0. In sum, we have shown that the relations

d

dt
F [ρ] � 0

d

dt
F [ρ] = 0 ⇔ ∂

∂t
ρ = 0 F bounded from below (10)

hold. From these relations we read off that F is a Lyapunov functional and conclude that
transient solutions converge to stationary ones in the limit t → ∞.

2.3. Langevin equation

Substituting equations (3), (5) and (6) into equation (8), we obtain

∂

∂t
ρ(ε, t) = ∂ρ

∂ε
+ T

∂

∂ε
ρ

∂

∂ε

ρ

g ∓ ρ︸ ︷︷ ︸
Y

. (11)

Let us evaluate the expression Y. First, we note that

ρ
∂

∂ε

ρ

g ∓ ρ
= ±dg

dε
[1 + ln(g ∓ ρ)] ∓ d

dε
[g ln(g ∓ ρ)] . (12)

Then, equation (11) becomes

∂

∂t
ρ(ε, t) = ∂ρ

∂ε
± T

∂

∂ε

{
dg

dε
[1 + ln(g ∓ ρ)]

}
∓ T

∂2

∂ε2
g ln(g ∓ ρ). (13)

Equation (13) is well defined in the limit ρ → 0 because equation (13) is homogeneous
with respect to ρ. That is, ρ = 0 is a solution of equation (13). In order to obtain a
semi-positive definite diffusion coefficient, we write the term g ln(g ∓ ρ) in equation (13) as
g ln(g ∓ ρ) = g ln(1 ∓ ρ/g) + g ln(g), which gives us

∂

∂t
ρ(ε, t) = − ∂

∂ε

{[
−1 ∓ T

ρ

dg

dε
ln

(
1 ∓ ρ

g

)]
ρ

}
∓ T

∂2

∂ε2
g ln

(
1 ∓ ρ

g

)
. (14)

Note that we have a reflective boundary at ε = 0 with ρ(0, t) = 0. The drift and diffusion
coefficients read

d1(ε, ρ) = −1 ∓ T

ρ

dg(ε)

dε
ln

(
1 ∓ ρ

g(ε)

)
(15)
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d2(ε, ρ) = ∓T
g(ε)

ρ
ln

(
1 ∓ ρ

g(ε)

)
(16)

such that equation (14) can be written as

∂

∂t
ρ(ε, t) = − ∂

∂ε
d1(ε, ρ)ρ +

∂2

∂ε2
d2(ε, ρ)ρ. (17)

The diffusion coefficient d2 is positive definite which can be seen if we distinguish explicitly
between Fermi and Bose systems. For Fermi systems we obtain d2 = T g ln(1/(1−ρ/g)) > 0
for 0 < ρ(ε) < g(ε). For Bose systems we have d2 = T g ln(1 + ρ/g)) > 0 for
ρ(ε) > 0. By similar reasoning, we see that the drift term is composed of an attractive
and repulsive part: d1 = d1(−) + d1(+). The attractive part is given by d1(−) = −1
and drives particles to states with the ground state energy equal to zero. The repulsive part
reads d1(+) = ∓Tρ−1 dg/dε ln(1 ∓ ρ/g) > 0 and drives the quantum particles away from the
ground state energy provided that the density of energy states increases with the energy (i.e., we
have dg/dε > 0). Due to the interplay of these two forces, stable stationary distributions can be
established. If the occupation number density ρ is normalized to M0 with M0 = ∫

�
ρ(ε) dε,

we can substitute P(ε, t; u) = ρ(ε, t)/M0 into equation (14) and thus obtain a nonlinear
Fokker–Planck equation for the probability density P. We proceed now under the hypothesis
that the Fokker–Planck equation thus obtained is a strongly nonlinear Fokker–Planck equation
such that solutions of the nonlinear Fokker–Planck equation can alternatively be computed
from an appropriately defined Langevin equation [20, 21]. This self-consistent Ito–Langevin
equation reads

d

dt
εL(t) = −1 ∓ T

M0 〈δ(ε − εL(t))〉
dg(ε)

dε
ln

(
1 ∓ M0 〈δ(ε − εL(t))〉

g(ε)

)∣∣∣∣
ε=εL(t)

+

√
∓T

g(ε)

M0 〈δ(ε − εL(t))〉 ln

(
1 ∓ M0 〈δ(ε − εL(t))〉

g(ε)

)∣∣∣∣∣
ε=εL(t)

�(t) (18)

and is related to ρ by means of the ensemble average ρ(ε, t) = M0〈δ(ε − εL(t))〉. Let us
apply now the Ito–Langevin equation (18) to describe the quantum statistics of electron gases
and blackbody radiation.

2.4. Free electron gas

The electrons of the conduction band of metals can be regarded as a gas of fermions that are
distributed over a continuous energy scale. In what follows we consider a free electron gas for
which the density of states is given by g(ε) = a

√
ε with a > 0 [11]. Consequently, we have

dg/dε = a/(2
√

ε) and the Fermi Fokker–Planck equation (14) (upper sign) becomes

∂

∂t
ρ(ε, t) = − ∂

∂ε

{[
−1 − aT

2
√

ερ
ln

(
1 − ρ

a
√

ε

)]
ρ

}
− aT

∂2

∂ε2

√
ε ln

(
1 − ρ

a
√

ε

)
. (19)

The corresponding Ito–Langevin equation (18) reads

d

dt
εL(t) = −1 − aT

2M0
√

ε 〈δ(ε − εL(t))〉 ln

(
1 − M0 〈δ(ε − εL(t))〉

a
√

ε

)∣∣∣∣
ε=εL(t)

+

√
−T

a
√

ε

M0 〈δ(ε − εL(t))〉 ln

(
1 − M0 〈δ(ε − εL(t))〉

a
√

ε

)∣∣∣∣∣∣
ε=εL(t)

�(t). (20)
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Figure 1. Stationary solution of the Fermi Fokker–Planck equation (19). Solid line: analytical
result (21). Diamonds: numerical results obtained by solving the Ito–Langevin equation (20).
Dashed line: stationary solution in the limiting case T → 0. Parameters: µ = εF = 2, T =
1.0, a = 0.1.
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Figure 2. Stationary solution as in figure 1 (solid line and diamonds). In addition, the initial
distribution that was used to solve the Ito–Langevin equation numerically is shown. The initial
distribution corresponds approximately to a uniform distribution in the range between ε = 1 and
ε = 4 and satisfies the constraint ρ(ε) < g(ε).

Equation (20) is subjected to the constraint ρ(ε) < a
√

ε for T > 0. In the case of the free
electron gas the stationary solution (7) reads

ρst(ε) = a
√

ε

exp{(ε − µ)/T } + 1
(21)

for T > 0, where µ corresponds to the Fermi energy εF . In the limit T → 0 we obtain
ρst(ε) = a

√
ε for ε � µ = εF and ρst(ε) = 0 for ε > µ = εF . In order to simulate the

electron gas by means of the Ito–Langevin equation (20) for a particular Fermi energy εF , we
first compute M0 by means of M0 = ∫

�
ρst(ε) dε and substitute the result into equation (20).

We then solve equation (20) by means of a Euler forward scheme that is described in
detail in [22]. Figure 1 shows the stationary distribution of the free electron gas as
obtained from equation (21) and from a simulation of the Ito–Langevin equation (20).
The dashed line describes the Fermi distribution at T = 0. In order to solve the Ito–Langevin
equation (20) numerically it is important to choose an initial distribution that satisfies the
constraint ρ(ε) < g(ε) = a

√
ε, see figure 2.

2.5. Blackbody radiation

The electromagnetic radiation in a blackbody cavity exhibits a frequency distribution ρ(ν)

given by a Bose–Einstein statistics [11]. Let us describe the radiation field as a photon gas
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Figure 3. Stationary solution of the Bose Fokker–Planck equation (22). Solid line: analytical
result (24). Diamonds: numerical results obtained by solving the Ito–Langevin equation (23).
Parameters: T = 1.0, a = 0.1.
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Figure 4. Illustration of Planck’s radiation formula. Planck’s formula as obtained from
equation (25) (solid line) and as obtained by solving numerically the Ito–Langevin equation (23)
(diamonds). Parameters are as in figure 3.

composed of photons with frequencies ν and energies ε = hν, where h is Planck’s constant.
For the sake of convenience, we put h = 1 such that ε = ν. The density of states of the photon
gas is given by g(ν) = aν2 with a > 0, which implies dg/dν = 2aν. Consequently, the Bose
Fokker–Planck equation (14) (lower sign) for the photon gas is given by

∂

∂t
ρ(ν, t) = − ∂

∂ν

{[
−1 +

2aT ν

ρ
ln

(
1 +

ρ

aν2

)]
ρ

}
+ aT

∂2

∂ν2
ν2 ln

(
1 +

ρ

aν2

)
(22)

and the Ito–Langevin equation (18) reads
d

dt
νL(t) = −1 +

2aT ν

M0 〈δ(ν − νL(t))〉 ln

(
1 +

M0 〈δ(ν − νL(t))〉
aν2

)∣∣∣∣
ν=νL(t)

+

√
aν2T

M0 〈δ(ν − νL(t))〉 ln

(
1 +

M0 〈δ(ν − νL(t))〉
aν2

)∣∣∣∣∣
ν=νL(t)

�(t). (23)

Since the chemical potential µ of photons equals zero, the stationary solution (7) reads

ρst(ν) = aν2

exp{ν/T } − 1
. (24)

The spectral energy density u(ν) of a cavity with volume V = 1 is defined by u(ν) = νρst(ν)

[23]. Using equation (24), we obtain Planck’s radiation formula

u(ν) = aν3

exp{ν/T } − 1
. (25)



Classical Langevin equations, free electron gas and blackbody radiation 3567

From equation (24) and ν ∈ � = [0,∞) it follows that the total mass M0 of the photon
gas for a particular temperature T is given by M0 = ∫ ∞

0 ρst(ν) dν. If we substitute this
M0-value into equation (23), we obtain a closed description of the stochastic evolution
of the photon frequencies ν. In particular, ρ(ν, t) and u(ν) can be computed from
ρ(ν, t) = M0〈δ(ν − νL(t))〉 and u(ν) = M0ν〈δ(ν − νL(t))〉st, see figures 3 and 4.

3. Conclusions

We have studied a classical Fokker–Planck equation describing both the relaxation of Fermi
and Bose systems to stationary states and the quantum statistics in these stationary states.
In addition, the corresponding Langevin equation describing the motion of single quantum
particles has been derived. In contrast to several previous studies, we included in our
considerations the density of quantum states. In doing so, we have been able to apply
our approach to the free electron gas of metal electrons and the blackbody radiation. Finally,
we would like to point out that the results obtained here might be applied to classical systems
that behave like Fermi systems. For example, it has been suggested that vortices of turbulent
flows and grains of granular matter can be described by means of Fermi–Dirac statistics (see,
e.g., [9, 24]).
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